INTERNATIONAL INDIAN SCHOOL, RIYADH. SAI WORKSHEET-2015-16
 SUBJECT: PHYSICS

STD: IX

MOTION:

1. Can the average speed of a moving object be zero? Why?
2. Give an example of a motion in which acceleration of an object is against the direction of motion.
3. A cyclist rides his cycle with a speed of $30 \mathrm{~m} / \mathrm{s}$ for the first half and the next half-length he covers with a speed of $45 \mathrm{~m} / \mathrm{s}$. Find the average speed of the cyclist.
4. A body moving in a circle of radius ' r ', covers $3 / 4{ }^{\text {th }}$ of the circle. Find the ratio of the distance to displacement.
5. List the important of velocity-time graph?
6. A train starting from rest attains a velocity of $20 \mathrm{~m} / \mathrm{s}$ in 2 minutes. Assuming that the acceleration is uniform, find (I) the acceleration (II) distance travelled by the train, while it attained this velocity.
7. How long will it take for a body accelerating by $2 \mathrm{~m} / \mathrm{s}^{2}$ to gain a velocity of $10 \mathrm{~m} / \mathrm{s}$, starting from rest?
8. Write and derive the equations of motion involving uniform acceleration.
9. Define a vector quantity giving examples.
10.A car starts from rest and accelerates with $2 \mathrm{~m} / \mathrm{s} 2$ for 10 seconds, After maintaining the velocity for 10 seconds, it comes to rest decelerating 1 $\mathrm{m} / \mathrm{s} 2$ i) Draw the shape of V-t graph. II) Find the maximum velocity attained and the total distance travelled during the journey.
11.The brakes applied to a car produce a negative acceleration of $10 \mathrm{~m} / \mathrm{s}^{2}$. If the car takes 5 s to stop after applying brakes, calculate the distance covered by the car before coming to rest.
12.Draw a velocity-time graphs for the following (a) A body moving with a uniform acceleration. (b) Uniform retardation (c) Zero acceleration.
13.Name a physical quantity that (i) varies (ii) remains same in a uniform circular motion.
14.An object is dropped from rest at a height of 150 m and simultaneously another object is dropped from rest at a height 100 m . What is the difference in their heights after 2 s if both the object drops with same acceleration?
15.Why does an athlete rotate his body before throwing a hammer or disc?
